Cartier divisors (HarIG)

Cartier divisors allow us to extend the notion of divisors to arbitrary schemes.

First, to give some motivation, assume X satisfies the properties from the previous section (integral, Noeth., sep., regular in codim one). Additionally, assume X is normal. In this case, a Cartier divisor is a special kind of Weil divisor, which is "locally principal." More precisely:

Def: If D is a Weil divisor on X hormal, D is $\frac{|ocally principa|}{|ocally principa|}$ if there is an open cover $\{U_i\}$ of X and corresponding $f_i \in K(X)^*$ such that $D \cap U_i = (f_i)$ on U_i .

Note that since on $U_i \cap U_j$, $(f_i) = (f_j)$, we get $\binom{f_i}{f_j} = 0$ on $U_i \cap U_j$. i.e. $\nabla_Y \binom{f_i}{f_j} = 0$ for all Y whose generic point is in $U_i \cap U_j$.

This means that for any open Spec A = UinUj, fif, is a unit in every Ap, P codim I. Thus, fif, E. O. Ap = A by normality.

Thus,
$$f_i/f_i$$
 is regular on U . Similarly, f_i/f_i is a)
well, so f_i/f_i is a unit in $\mathcal{O}_X(U)$. That is,
 $f_i/f_i \in \mathcal{O}_X^*(U)$,
where \mathcal{O}_X^* is The sheaf on X defined
 $U \longmapsto \mathcal{O}_X(U)^* = group of units (w/multi)$

We use this characterization to define Cartier divisors, a generalization of locally principal divisors to an arbitrary scheme.

Def: X a scheme. For each affine open U=SpecA, let $S \subseteq A$ be the non-zero divisors. The total quotient king of A is $K(U) = S^{-1}A$. For any open U, define

$$S(u) = \begin{cases} r \in \Gamma(u, \mathcal{O}_X) & | r is a NZD in \mathcal{O}_X \\ for all x \in U \end{cases}$$

(check: this is the same as S above When U = Spee A). The rings $S(u)^{-1} \Gamma(u, O_x)$

form a presheat, and the sheafification is X, called the sheat of total quotient rings of O.

Note that if X is integral, X(U) = K(X) on every open

set.

Def: A <u>Cartier divisor</u> on a scheme X is given by an open cover $\{U_i\}$ of X together $W/f_i \in \Gamma(U_i, K^*)$ such that for each i, j,

i.e. f_i is regular on the overlap, and it's a unit. Equivalently, a Cartier divisor is a global section of \mathcal{R}^* (w/ multiplication).

A Cartier divisor is principal if it is in the image of the map $\Gamma(X, K^*) \longrightarrow \Gamma(X, K^*/O^*)$. Two Cartier divisors are <u>linearly equivalent</u> if their difference (i.e. quotient) is principal. The group of Cartier divisors modulo principal divisors is denoted CaCI(X).

Cartier vs. locally principal vs. Weil

Prop: If X is normal, Noeth., separated, then D & Div X is locally principal (=) D is Cartier. The principal Cartier divisors correspond to the principal Weil divisors.

Pf: We've already seen that locally principal => Cartier.

For the other direction, let

$$\{u_i\}_j$$
 $f_i \in \Gamma(u_i, \mathcal{K}^*) = \mathcal{K}(x)^*$

be the data of a Cartier divisor on X. We define the associated weil divisor as follows:

For each prime divisor $Y \in X$, take U_i s.t. $U_i \cap Y \neq \emptyset$. Take the coefficient of Y to be $v(t_i)$. If U_j also intersects Y, then $f'_{f_j} \in O^*(u_i \cap U_j)$, so $V_i(f_i) = V(f_j)_s$ so the coefficient is well-defined, and we get a well-defined weil divisor, $D = \sum V_i(f_i) Y$.

Note that $D \cap U_i = (f_i)$ by construction, so D is locally principal.

The principal Cartier divisors are exactly those that come from $f \in K^*$. i.e. they are the principal Weil divisors. \Box

Thus, w/ X as in the prop, we have {principal divisors} = {loc. principal divisors} = {Weil divisors}

In general, heither inclusion is an equality. For the second inclusion, consider the following example:

Ex: Let X S A be the cone X = Spec A, with

$$A = k[\overline{x}, y, \overline{z}] \qquad (Recall this is normal) \\ (\overline{x}y - \overline{z}^2) \\ Recall that CIX = \frac{\overline{z}}{2\overline{z}} and is generated by Y, the line cut out by $y = \overline{z} = 0.$$$

Suppose there is a heighborhood U of the point

$$M = (x, y, z)$$
 s.t. YNU is principal. Assume WLOG that
 $U = SpecB$ is a distinguished open, so that $(y, z)B$
is principal (This is a consequence of something in
m earlier proof: We showed that B normal and
 $Y \subseteq SpecB$ prime. Then Y principal \Rightarrow corr. prime ideal
is principal in B) Then, since the origin is in U,
we can localize, and get
 $(y, z)Bm = (y, z)Am$ is principal.

In A_m , M_m^2 is a 3-dim vector space, generated by $\overline{x}, \overline{y}, \overline{z}$, so the image of $(y, \overline{z})A_m$ is 2-dim, and thus com't be principal (Do you see why?), which is a contradiction.

Thus Y is not locally principal, so in particular,

$$CaCI(X) = 0 \neq \frac{\pi}{2\pi} = CI(X).$$

If, in addition X is "locally factorial", i.e. all local rings are UFDs, then all weil divisors are Cartier divisors. That is:

Theorem: let X be integral, separated, and Noetherian, such that all local rings are UFDs. Then the group of Weil divisors is naturally isomorphic to the group of Cartier divisors. Thus, CaClX = ClX. * e.g. nonsingular X satisfy this

Pf: First note that UFDs are normal, so the Cartier divisors are exactly the locally principal divisors. Thus, we just need to show that all Weil divisors are locally principal.

Let D be a Weil divisor and
$$x \in X$$
 any point.
Then D induces a Weil divisor D_x on Spec O_x .

(Take
$$U = \operatorname{Spec} A$$
 an affine nhoud of γ . This
 $A \rightarrow A_{\chi} \stackrel{=}{=} \mathcal{O}_{\chi}$, so D_{χ} is the preimage of D in
 $\operatorname{Spec} \mathcal{O}_{\chi} \rightarrow \operatorname{Spec} A$.)

 O_x is a UFD, so D_x is principal (as discussed earlier), so let $D_x = (f_x)$, $f_x \in K^*$, where K = K(x).

Then D and D_x agree at x. That is, they differ by a divisor $\Sigma^{a}iY_i$ where $x \notin Y_i$ for any i. In particular, they agree on an open set U_x . Thus $\{(U_n, f_n)\}$ define a locally principal divisor. This construction is the inverse of the conversion loc. princ. div. \rightarrow Weil div., so we get a 1-1 correspondence. \square

Effective Cartier divisors

If X is normal, which locally principal divisors are effective? Given $\{(u_i, f_i)\}$ locally principal, it is effective (=) (f_i) is effective on U for each i.

(fi) effective ⇐ (fi) ∩ SpecA is effective ∀ affine opens SpecA

We can use this characterization to define effective Cartier divisors on an arbitrary scheme:

Def: A Cartier divisor D is <u>effective</u> if it can be written $\{(U_i, f_i)\}$ where each $f_i \in \Gamma(U_i, O_{u_i})$. We write $D \ge 0$.